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Optimisation of high performance liquid chromatography
separation of neuroprotective peptides

Fractional experimental designs combined
with artificial neural networks
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Abstract

The study of experimental design conjunction with artificial neural networks for optimisation of isocratic ion-pair reverse phase HPLC
separation of neuroprotective peptides is reported. Different types of experimental designs (full-factorial, fractional) were studied as suitable
input and output data sources for ANN training and examined on mixtures of humanin derivatives. The independent input variables were:
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composition of mobile phase, including its pH, and column temperature. In case of a simple mixture of two peptides, the retention
most retentive component and resolution were used as the dependent variables (outputs). In case of a complex mixture with unkn
of components, number of peaks, sum of resolutions and retention time of ultimate peak were considered as output variables
factorial experimental design has been proved to produce sufficient input data for ANN approximation and thus further allowed d
the number of experiments necessary for optimisation. After the optimal separation conditions were found, fractions with pep
collected and their analysis using off-line matrix assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF
performed.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the HPLC method development, the most important
aspect is to achieve adequate separation of all components
in reasonable time. Consequently, optimisation of different
chromatographic factors, like the mobile phase composition,
pH of aqueous component of the mobile phase, as well as col-
umn temperature, is critical for sufficient resolution. With the
respect to the high number of factors influencing the separa-
tion, it could be difficult and time-consuming to reach optimal
separation conditions, particularly using the single variable
optimisation approach, when one variable is changed in time
while the others are kept constant. Recently, general optimi-
sation approach based on the combination of experimental
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design (ED) and artificial neural networks (ANN)[1,2] has
been proposed. The ED-ANN is based on suitable desi
experiments and then the optimal separation condition
predicted with an artificial intelligence method using in
and output data of these experiments. The usefulness of
in the field of HPLC separation has already been repo
Petritis et al.[3] applied the ANN model to predict elutio
times of peptides on the basis of their amino acid sequ
The usefulness of ANN modelling in quantitative structu
retention relationships was also demonstrated by Lo
[16], Tham and Agatonovic-Kustrin[17], and Agatonovic
Kustrin et al. [18]. Another approach using the ANN
response surface modelling. In the response surface
elling, effects of different chromatographic factors are stu
and optimal separation conditions are looked for[4,5,19,20].

Humanin and its derivatives were found to protect
neural cells from pathological proteins, like the amy
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precursor protein, presenilin-1 or presenilin-2 mutants,
which cause the Alzheimer’s disease[6]. Analytical meth-
ods for determination of these compounds have already
been examined[7,8]. For the peptide separation, ion-pair
(IP) reverse phase high-performance liquid chromatography
(RPLC) using trifluoroacetic acid (TFA) is frequently applied
[9,10] as an alternative to ion-exchange chromatography.
In IP-RPLC, TFA is used as the anionic ion-pairing reagent
that minimises the charge on carboxylates and enhances the
hydrophobicity of the peptide.

To achieve separation of peptides with similar amino
acid sequence and closed physico-chemical properties, the
influence of the mobile phase composition (TFA concentra-
tion, acetonitrile content and pH of aqueous component), as
well as the column temperature, was carefully investigated.
Using increased temperatures for the RPLC separation of
peptide mixtures has been proposed[11,12], primarily to
increase the column efficiency and to make the analysis time
shorter.

The aim of this work was to study and develop the
effective general optimisation approach for separation of
complex peptide mixtures without prior knowledge about
their physico-chemical properties. Then, this approach was
applied to optimise IP-RPLC separation of neuroprotective
peptides such as humanin derivatives.
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Fig. 1. The scheme of central composite design. Solid lines—cube design,
dotted lines—star design.

2.2. Artificial neural network

Artificial neural network is a computational modelling
tool that consists of groups of highly interconnected process-
ing elements called neurons or nodes. ANNs are inspired by
the architecture of cerebral networks[14]. The neurons are
arranged in series of layers: one input layer with nodes rep-
resenting independent variables, one output layer with nodes
representing dependent variables, and several hidden layers
(usually 1–3) which associate the inputs with outputs. Each
neuron from one layer is connected with each neuron in the
next layer (Fig. 2). As relevant inputs, as well as outputs for
ANN training, data coming from ED are used.

The training is carried out by adjusting strength of
connections between neurons with the aim to adapt the
outputs of whole network to be closer to the desired outputs,
or to minimise the sum of the squared error (SSE) of the
training data. SSE is an error function composed by squaring
the difference between sets of target and actual values, and
by adding these together. SSE computed at the output side
is propagated backwards from this layer to the hidden layer
and at the end to the input layer. During the training phase,
each neuron in the hidden layer sums its input signalsxi

after multiplying them by the strengths of the respective
connections called weights (wij), and computes its outputyj

as a function of the sum, Eq.(1):

y

. Theory

.1. Experimental design

The experimental design means planned series of e
ments with changing variables describing the experim
n the most efficient way in order to find optimal varia
ettings for further evaluation[13]. The primary goal i
o extract the maximum amount of unbiased informa
egarding the factors that affect the separation proces
ther words, the aim of ED is to get the best descriptio

he response surface. The response surface is the depe
f the output response as a function of one or more facto
ase of high number of factors, factorial experimental des
FED) are recommended[13]. Using factorial ED, not onl
asic effects but also interactive effects of given factors
aximum precision can be estimated. One of the fact
D, in which further reduction of the number of necess
xperiments is possible, is called fractional design (FrE

In our case, the data from three-factor central comp
esigns (CCD) as well as fractional two-level three-fa
esigns (cube, CD, and star, SD) were taken as the re

nput data for the ANN training (Fig. 1) [13]. The experiment
ere performed according to the design obtained using
ED and FrED, and then the results from these experim
outputs), as well as separation conditions (inputs) were
o train ANN with the aim to find the approximation fun
ion between these variables and thus optimum separ
onditions.
j = f
(∑

wijxi

)
(1)

Fig. 2. Scheme of three-layer network used inCase I.
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wheref is the activation function (Eq.(2)) that is necessary
to transform the weighted sum of all signals connecting with
a neuron.

f = 1

1 + e(1−x)/z (2)

where z is the gain determining the slope of the sigmoid
function.

The training phase is finished when SSE is minimised
across all training cases. Once ANN has been trained, it has
good predictive capability and ability to accurately describe
the response surface even without any knowledge about the
physical and chemical background of the modelled system.
Since ANNs are learning to associate the inputs with the out-
puts, the network may get over-trained, i.e. does not approxi-
mate the well studied system. Therefore, to keep independent
check of the ANN performance, relevant verification and test
data sets, different from training data set, should be created.

3. Experimental

3.1. Chemicals

The neuroprotective peptide samples—[G14]-humanin
(HNG): MAPRGFSCLLLLTGEIDLPVKRR, [W14]-hu-
m ,
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desorption/ionisation time of flight mass spectrometry
(MALDI-TOF-MS). All measurements of mass spectra were
performed on AXIMA CFR (Kratos Analytical, Manchester,
UK) mass spectrometer, equipped with the nitrogen laser
(Franklin, MA, USA) wavelength of 337 nm.

3.3. Procedures

3.3.1. Calculation procedures
The experimental designs were devised using Statistica

6.1 software (StatSoft, Tulsa, OK, USA). For neurocom-
puting, TRAJAN Neural Network Simulator version 3.0D
(Trajan Software Ltd., Durham, UK) was employed. Addi-
tional experiments, so called verification and test data sets,
were conducted to confirm reliability of ANN performance.
Verification data set consisted of five sets of input and output
data, whereas test data set of four. Inputs were randomly
chosen inside the space given by input variable limits and
related outputs were experimentally obtained. Then, these
were submitted to once trained ANN and SSE for these data
sets were evaluated.

3.3.2. Analytical procedures
Individual peptides of model peptide mixture (Case I) as

well as the complex peptide mixture (Case II) were for the
RPLC analysis dissolved in deionised water (1 mg/ml). Com-
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anin (HNW): MAPRGFSCLLLLTWEIDLPVKRRA
nd the peptide mixture of (HNG) derivatives (num
f individual peptides estimated by MALDI-TOF-M
ine dominant components, 25% of content unidenti
escribed elsewhere[8]), used in this study were purchas

rom Clonestar Biotech (Brno, Czech Republic). Bradyki
enin substrate tetradecapeptide, angiotensin I, adren
icotropic hormone (fragments 18–39), pancreatic bo
nsulin,�-cyano-4-hydroxycinnamic acid and trifluoroace
cid (TFA) were from Sigma (Steinheim, Germany). HP
rade acetonitrile was from Merck (Darmstadt, Germa
ll reagents, except for peptides, were of the analy
rade purity. Deionised water used to prepare all solu
as produced in a commercial apparatus from Pre
FG’D Systems (Phoenix, AZ, USA).

.2. Instrumentation

The Shimadzu HPLC 10A VP system (Kyoto, Jap
onsisting of a system controller (SCL-10A VP), a dega
GT-154), a pump (LC-10AD VP), a column oven (CT
0AS VP), a diode array detector (SPD M10A VP) an

raction collector (FRC-10A) was used. The system
ontrolled by Class-VP 6.12 SP5 software. Comme
re-packed analytical HPLC column Luna C8(2) (3�m
article size, 150 mm× 4.6 mm I.D.) as well as the gua
olumn (4× 2 I.D.) containing the same packing mate
ere from Phenomenex (Torrance, CA, USA).
The composition of individual peptide fractio

as checked by means of matrix assisted l
osition of the mobile phase, as well as its pH, was cha
n accordance with proposed ED. The temperature of the
mn was also included in this study. All experiments w
erformed using isocratic elution at the flow rate 1 ml/mi

riplicate.
The mass spectrometric analysis was done in this

�l of matrix was added to 1�l of the sample solution an
ixed by pipetting up and down directly on the sample
et. Then, the sample target was allowed to dry in th
tream and introduced to the mass spectrometer. The e
f the laser was changed in relative units, where 180
orrespond to the maximum power of 6 mW and 0 unit
mW. External calibration with bradykinin, renin substr

etradecapeptide, angiotensin I, adrenocorticotropic horm
fragments 18–39) and bovine insulin was used. As a m
-cyano-4-hydroxycinnamic acid (CHCA) dissolved in a

onitrile and water (1:1) was utilised.

. Results and discussion

In this study, we modelled two situations relevant for se
ation of peptide mixture of unknown composition by me
f IP-RPLC. First, we dealt with separation of simple mixt
f G14-humanin (HNG) and W14-humanin (HNW) assigne
sCase I. The difference in the structure of these two pept

s just one amino acid of 24 total, where we do not ex
hanges in protonation properties, but only in structure. T
hese two peptides represent a challenge for separati
ell as this case is similar to many other real cases of pe
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Table 1
Experimental conditions (inputs) and results (outputs) used for optimisation of separation in theCase I

Experiment AcN (%, v/v) TFA (%, v/v) T (◦C) tRmax (min) R

1 28.6 0.070 35 62.20 15.90
2 30.0 0.050 23 19.11 16.83
3 30.0 0.050 47 6.05 17.55
4 30.0 0.090 23 46.43 15.29
5 30.0 0.090 47 41.75 15.36
6 32.0 0.036 35 5.07 10.65
7 32.0 0.070 15 11.68 14.48
8 32.0 0.070 35 11.07 15.48
9 32.0 0.070 35 10.83 15.44

10 32.0 0.070 55 10.33 16.44
11 32.0 0.100 35 27.60 20.96
12 34.0 0.050 23 2.98 6.48
13 34.0 0.050 47 3.03 7.17
14 34.0 0.090 23 14.36 16.40
15 34.0 0.090 47 14.22 18.13
16 35.4 0.070 35 4.70 9.55

Central composite design: 1–16;cube design: in bold; star design: in italics.

separation. InCase II, we studied rather complicated mix-
ture of HNG derivatives (with different peptide chain length)
where the exact number of peptides/analytes in the separated
mixture was relatively high.

There are several possibilities how to approach the optimi-
sation of the separation with regard to the goal (minimal run
time, maximal resolution, etc.). Usually, optimum separation
means that all components of the sample are separated in a
reasonable time. The time of analysis is limited by the reten-
tion time of the most retentive component. Another important
aspect of separation is resolution, which should be in a case
of two components at least 1.5. Hence, as the output data, we
chose two criteria inCase I: retention time of a more reten-
tive component (tRmax) that should be as low as possible,
and resolution that should possess the greatest value while
reasonable maximum peak retention time is maintained. In
Case II, the situation is more complicated as it was men-
tioned before, especially the unknown number of separated
components. As inCase I, we followed the retention time of
the most retentive component (tRmax). Since evaluation of the
resolution between each pair of peaks is quite complex, sum
of resolutions (

∑
R) was monitored. However, these param-

eters did not describe the system completely. To appraise sum
of resolution, it is necessary to know the number of peaks.
Therefore, the number of (significant) peaks (n) observed
in chromatogram was monitored as the most important fac-
t ual,
b etter
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space of the experimental conditions setting and to esti-
mate the limits of factors. The preliminary CCD included the
mobile phase composition: acetonitrile content in the range
0–80% (v/v), TFA concentration in the range 0.02–0.1%
(v/v), pH in the range 2–4 and column temperature in the
range 10–55◦C. According to the respective results, the lim-
its of factors were adjusted and new CCD was proposed. The
pH of aqueous component of the mobile phase was excluded
from this CCD because it was observed that pH influences
mainly the time of analysis. The time of analysis decreased
with the decreasing value of pH while the resolution changed
slightly (�pH = 0.1 resulted in�R ∼ 0.5%). Thence, the limit
pH value for the given column equal to 2 was chosen. There-
fore, three factors were considered in the new CCD. The
content of acetonitrile was changed in the range from 28%
to 36%, the content of TFA was changed in the range from
0.04% to 0.1%. The range of the column temperature was
changed from 10 to 55◦C. The input, the mobile phase com-
position and the column temperature, as well as the output
data (tRmax, R) that were used for ANN training, are listed in
Table 1. The architecture of ANN was optimised by moni-
toring of the dependence of SSE on the number of nodes in
hidden layer. The increase of number of hidden nodes was
stopped when SSE did not decrease more. Furthermore, SSE
of verification as well as test data sets were also monitored
(Table 2). For bothCases, the optimal architecture of ANN
w yer,

T
T

D

C 50
C 00
C 40
C 47
C 30
C 30
or. Determination of the number of peaks is quite unus
ut these variables with respect to the others enable b
escription of the system. We also preferably used the
ratic elution not to compromise the selectivity of separa
nd thus possible maximal number of peaks.

.1. Case I

In the first attempt to optimise IP-RPLC separation of
ixture of HNG and HNW using FED, preliminary fou

actor central composite design was devised to map ou
as found comprising of three neurons in the input la

able 2
he values of SSE of the training, verification and data sets

ata set Training Verification Test

ase I—CCD 1.7280 4.7660 2.62
ase I—CD 1.4760 3.4600 4.83
ase I—SD 2.3500 3.9060 3.52
ase II—CCD 1.3110 2.8150 0.98
ase II—CD 0.7375 3.2610 1.09
ase II—SD 1.3740 3.3470 1.96
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Fig. 3. Response surface diagrams forCase II: (a) tRmax as a function of acetonitrile and TFA content; (b) resolution as a function of column temperature and
content of acetonitrile and (c) resolution as a function of column temperature and content of TFA.

and three neurons in the hidden layer. InCase I the archi-
tecture comprises two neurons in output layer (two output
variables). ANN was trained and used to predict the peak
with maximal retention time and the resolution across the
range of eluent conditions within the search area. Then, six
response surfaces were created as a three dimensional graphs
of dependence of output variables (tRmax, R) on the input
variables (AcN content, TFA content, and temperature). The
analysis of the response surfaces indicated that the optimal
value for resolution was found with 30% acetonitrile, 0.04%
TFA and 55◦C while tRmax was below 15 min (Fig. 3). The
experiment was conducted under the optimal separation con-
ditions (seeFig. 4) and the determined maximum peak reten-
tion time (retention time of HNW) and the resolution were
11.5± 0.4 min (predicted value 8.5± 1.7 min) and 15.7± 1.8
(predicted value 14.9± 3.0), respectively (Table 3).

In the following step, the prediction capability of ANN
using the data from the FrED was examined. The central
composite design was divided into the central two-level three-
factor cube design (CD) and the star design (SD). The data

of CD and SD used for ANN training are listed inTable 1(in
bold and italics, respectively). The proper ANN were trained
and the results implicit from the analysis of the response sur-
face diagrams were similar to the previous proposal. In case of
CD, the predictedtRmaxand the resolution were 4.0± 1.5 min
and 11.4± 4.4, respectively. In the case of SD, the predicted
values fortRmax and the resolution were 13.6± 3.1 min and
14.5± 3.3, respectively. As it is obvious inTable 3, the RSD
of the predicted and measured values of the maximum reten-
tion time as well as the resolution is the highest in case of
the cube design. With regard to the low RSD values coming
from the SD data, this design was used as a suitable starting
fractional design in optimisation of HNG derivatives mixture
(Case II).

4.2. Case II

In the first step, the star design of experiments was pro-
posed and applied. The input as well as the output data for
ANN training are listed inTable 4in italics. InCase II, there
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Fig. 4. Chromatogram of theCase I. Separation conditions: Luna C8(2) (3�m, 150 mm× 4.6 mm I.D.), 0.04% TFA, 30% acetonitrile, 55◦C, 1 ml/min,
λ = 200 nm.

Table 3
Measured and predicted data forCase I

Data tRmax (min) RSD (%) R RSD (%)

Measured 11.5 – 15.7 –
Central composite design 8.5 13 14.9 2
Cube design 4.0 33 11.4 14
Star design 13.6 9 14.5 4

RSD—relative standard deviation.

were three neurons in output layer (three output variables),
thus the optimal ANN structure was 3:3:3. The trained ANN
was then used to predict the number of peaks, the maximum
peak retention time, as well as the sum of resolution across

the range of eluent conditions within the search area. Note
that the most important criterion in the optimisation of HNG
derivatives mixture separation was the number of peaks. Opti-
mal separation conditions were estimated from the analysis
of nine response surface diagrams and they were: 0.04% TFA,
29% AcN and 55◦C. The analysis under these conditions was
run (Fig. 5). Since the prediction capability was not fully sat-
isfactory (Table 5), this data point was added to the training
set and the ANN was trained again. Using the newly trained
ANN, unfortunately, the results were not improved.

Therefore, in the next step, it was decided to return to the
more complex, but better surface describing CCD. The ANN
with the optimal architecture using the data from CCD was

Table 4
Experimental conditions (inputs) and results (outputs) used for optimisation of separation for inCase II

Experiment AcN (%, v/v) TFA (%, v/v) T (◦C) n tRmax (min)
∑

R

1 28.6 0.070 35 8 29.05 27.18
2 30.0 0.050 23 10 10.19 16.46
3 30.0 0.050 47 13 9.97 20.94
4 30.0 0.090 23 8 21.10 26.14
5 30.0 0.090 47 8 20.18 23.17
6 32.0 0.036 35 5 2.81 4.57
7 32.0 0.071 15 7 4.38 8.93
8 32.0 0.071 35 7 4.51 9.25
9 32.0 0.071 35 7 4.49 9.98

10 32.0 0.071 55 7 4.45 9.60
11 32.0 0.100
12 34.0 0.050
13 34.0 0.050
14 34.0 0.090
15 34.0 0.090
16 35.4 0.068

Central composite design: 1–16;cube design: in bold; star design: in italics.n: nu
35 7 8.06 16.37
23 3 4.70 8.97
47 5 4.67 12.13
23 7 5.63 10.17
47 7 5.80 10.53
35 3 2.23 2.91

mber of peaks and
∑

R: sum of resolutions.
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Fig. 5. Chromatogram of theCase II. Separation conditions: Luna C8(2) (3�m, 150 mm× 4.6 mm I.D.), 0.04% TFA, 29% acetonitrile, 55◦C, 1 ml/min,
λ = 200 nm.

trained and then the response surface analysis and predic-
tion was done. The analysis of diagrams confirmed that the
optimal separation conditions found in the case of SD were
correct. The predictive capability was very good, considering
the number of peaks and the resolution, but unsatisfactory in
case of the maximum retention time where RSD was over
30%.

Since the data of the cube design as a part of the central
composite design have already been measured, new ANN
using these training data was trained. The results concerning
the optimal separation conditions were again in agreement
with the previous ones (data not shown).

4.3. MALDI-TOF mass spectrometry of G14-humanin
derivatives

When the optimal separation conditions were found,
individual fractions with peptides were collected and anal-
ysed. The composition of the fractions was analysed off-line
by means of the matrix assisted laser desorption/ionisation
time of flight mass spectrometry (MALDI-TOF-MS). Using

Table 5
Measured and predicted data forCase II

Data n RSD
(%)

tRmax

(min)
RSD
(%)

R RSD
(%)

M
C
d
C
S

R

MALDI-TOF-MS, eight peptides in the mixture were
identified in accordance to mass spectrometric analysis of
unseparated mixture[8]. The identification of the other
peptides was probably disabled by insufficient separation of
peptides (Fig. 5) or their non-specific co-elutions, where both
effects could cause mutual suppression of ionisation[15].

5. Conclusions

The combination of ED, the FED as well as the FrED, with
ANN has been found to be general and effective tool for opti-
misation of the RPLC separation of peptides mixtures. Unlike
to approaches using hard or semi-hard models for prediction
of retention times[21,22], combination of ED-ANN allows
to optimise separation conditions regardless of what we know
about the structure and other physico-chemical properties of
peptidic analytes. Another advantage of the use of ED is that
it does not require excessive number of experiments in com-
parison with the single variable approach where at least 14
experiments are needed.

In Case I, using the star design only eight experiments
were sufficient to reach the optimal separation conditions.
The ANN trained with the data set coming from the star
design has good predictive capability and ability to model
the response surface of outputs. InCase II, the results were
q om-
p ual
t ber
o lysis
i mass
s

easured 12 – 10.8 – 35.8 –
entral composite
esign

12 0.7 18.3 35 23.8 17

ube design 13 3 16.4 26 25.1 15
tar design 8 19 15.9 23 18.7 24

SD—relative standard deviation.
uite complex. This mixture can, in some way, model c
licated peptide matrix, e.g. protein digest (10–30 individ

ryptic peptides) or biological fluids, where the exact num
f peptides is not known and the primary goal of the ana

s to separate as many peptides as possible, e.g. before
pectrometric analysis.
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The analysis of the response surfaces diagrams, obtained
from the ANN trained with the data sets coming from SD,
CD, as well as from CCD, displayed the similar optimal sep-
aration conditions settings for IP-RPLC. Though, from the
point of view of the prediction precision, the relative stan-
dard deviations of predicted outputs were varying in a range
from 0.7% to 35%. Using CCD, RSD of predicted values of
the number of peaks, the main criterion, and the resolution
was reasonable, 0.7% and 17%, respectively. Concerning the
RSD of the predictedtRmax, the value was over 30%. In the
case of FrED, the relative standard deviations of predictions
of all outputs for SD were relatively high (>20%) while using
CD, only RSD of predictedtRmax was over 20%.

To conclude, FED produced sufficient input data sets to
optimise IP-RPLC separation of peptides for even compli-
cated systems. Furthermore, we have shown that FrEDs were
adequate to reach satisfactory optimisation while halving the
number of experiments needed for FED. Thus, FrED can be
utilised with benefit instead of FED for optimisation of RPLC
separation of peptides by ED-ANN. As it can be seen in the
results obtained by optimisation of the simple mixture sepa-
ration, the FrED represented by central two-level star design
was found to be suitable. For the more complex systems such
asCase II, cube design standing was found more appropriate.
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